fraction

Below is the complete fraction class (written in most idiomatic way), with everything that was used in any lesson (with all possible improvements).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <iostream>
#include <cassert>

// (greatest common divisor)
// if you have C++17, you can remove this function and use std::gcd from <numeric>
int gcd(int a, int b)
{
	if (b == 0)
		return a;
	else
		return gcd(b, a % b);
}

class fraction
{
public:
	fraction(int numerator = 0, int denominator = 1)
	: m_numerator(numerator)
	, m_denominator(make_valid_denominator(denominator))
	{}

	void simplify()
	{
		const int n = gcd(m_numerator, m_denominator);
		m_numerator /= n;
		m_denominator /= n;
	}

	int numerator() const
	{
		return m_numerator;
	}

	void numerator(int value)
	{
		m_numerator = value;
	}

	int denominator() const
	{
		return m_denominator;
	}

	void denominator(int value)
	{
		m_denominator = make_valid_denominator(value);
	}

	void print(std::ostream& os = std::cout) const
	{
		os << m_numerator << "/" << m_denominator;
	}

	double approx() const
	{
		return static_cast<double>(m_numerator) / m_denominator;
	}

	operator double() const
	{
		return approx();
	}

	fraction& operator+=(fraction rhs)
	{
		m_numerator = numerator() * rhs.denominator() + rhs.numerator() * denominator();
		m_denominator = denominator() * rhs.denominator();

		simplify();
		return *this;
	}

	fraction& operator-=(fraction rhs)
	{
		m_numerator = numerator() * rhs.denominator() - rhs.numerator() * denominator();
		m_denominator = denominator() * rhs.denominator();

		simplify();
		return *this;
	}

	fraction& operator*=(fraction rhs)
	{
		m_numerator *= rhs.numerator();
		m_denominator *= rhs.denominator();

		simplify();
		return *this;
	}

	fraction& operator/=(fraction rhs)
	{
		assert(rhs.numerator() != 0);
		m_numerator *= rhs.denominator();
		m_denominator *= rhs.numerator();

		simplify();
		return *this;
	}

	fraction& operator%=(fraction rhs)
	{
		assert(rhs.numerator() != 0);
		m_numerator = (numerator() * rhs.denominator()) % (rhs.numerator() * denominator());
		m_denominator *= rhs.denominator();

		simplify();
		return *this;
	}

	fraction& operator++() // (prefix)
	{
		m_numerator += m_denominator;
		return *this;
	}

	fraction& operator--() // (prefix)
	{
		m_numerator -= m_denominator;
		return *this;
	}

	fraction operator++(int) // (postfix)
	{
		fraction old = *this;
		operator++();
		return old;
	}

	fraction operator--(int) // (postfix)
	{
		fraction old = *this;
		operator--();
		return old;
	}

private:
	static int make_valid_denominator(int value)
	{
		if (value == 0)
			return 1;
		else
			return value;
	}

	int m_numerator;
	int m_denominator;
};

bool operator==(fraction lhs, fraction rhs)
{
	if (lhs.denominator() == rhs.denominator())
		return lhs.numerator() == rhs.numerator();

	return lhs.numerator() * rhs.denominator() == rhs.numerator() * lhs.denominator();
}

bool operator!=(fraction lhs, fraction rhs)
{
	return !(lhs == rhs);
}

bool operator<(fraction lhs, fraction rhs)
{
	if (lhs.denominator() == rhs.denominator())
		return lhs.numerator() < rhs.numerator();

	return lhs.numerator() * rhs.denominator() < rhs.numerator() * lhs.denominator();
}

bool operator> (fraction lhs, fraction rhs) { return rhs < lhs; }
bool operator<=(fraction lhs, fraction rhs) { return !(lhs > rhs); }
bool operator>=(fraction lhs, fraction rhs) { return !(lhs < rhs); }

fraction operator+(fraction lhs, fraction rhs) { return lhs += rhs; }
fraction operator-(fraction lhs, fraction rhs) { return lhs -= rhs; }
fraction operator*(fraction lhs, fraction rhs) { return lhs *= rhs; }
fraction operator/(fraction lhs, fraction rhs) { return lhs /= rhs; }
fraction operator%(fraction lhs, fraction rhs) { return lhs %= rhs; }

std::ostream& operator<<(std::ostream& os, fraction fr)
{
	fr.print(os);
	return os;
}

Couldn't the gcd function be constexpr?

Actually, everything except print function can be constexpr. Adding it is very trivial so I choose not to - it would only increase verbosity.